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in the 5� splice site of the dystrophin gene first intron respon-much interest to examine the expression pattern of dys-
sible for X-linked dilated cardiomyopathy. Hum Mol Genettrophin transcripts in XLDCM patients with mutations
5:73–79outside the 5� end of the DMD gene, such as in the patients

Muntoni F, Cau M, Ganau A, Congiu R, Arvedi G, Mateddureported by Oldfors et al. (1994) (a deletion affecting ex-
A, Marrosu MG, et al (1993) Deletion of the dystrophinons 6–13), by Towbin et al. (1994) (a mutation within
muscle-promoter region associated with X-linked dilated

exons 8–10), and by Franz et al. (1995) (a mutation cardiomyopathy. N Engl J Med 329:921–925
around exons 27–30). Muntoni F, Melis MA, Ganau A, Dubowitz V (1995) Tran-

Our results, together with the report by Muntoni et scription of the dystrophin gene in normal tissues and in
al. (1995), also indicate that the sequence around the 5� skeletal muscle of a family with X-linked dilated cardiomy-
end of the first muscle intron may be essential for the opathy. Am J Hum Genet 56:151–157

Oldfors A, Eriksson BO, Kyllerman M, Martinsson T, Wahl-functions of the muscle promoter, because this region
ström J (1994) Dilated cardiomyopathy and the dystrophinconsistently is involved in these patients. In fact, Klamut
gene: an illustrated review. Br Heart J 72:344–348et al. (1996) recently have identified a transcriptional

Sakuraba H, Ishii K, Shimmoto M, Yamada H, Suzuki Yenhancer within the first muscle intron of the human
(1991) A screening for dystrophin gene deletions in JapaneseDMD gene. Further molecular and cellular biological
patients with Duchenne/Becker muscular dystrophy by thestudies on dystrophinopathy with the XLDCM pheno-
multiplex polymerase chain reaction. Brain Dev 13:339–

type will help us understand the functions of dystrophin 342
promoters in the skeletal and cardiac muscles. Towbin JA, Hejtmancik JF, Brink P, Gelb B, Zhu XM, Cham-

In summary, we showed up-regulation of the brain berlain JS, McCabe ERB, et al. (1993) X-linked dilated car-
and Purkinje-cell forms of dystrophin transcripts not diomyopathy: molecular genetic evidence of linkage to the
only in an atypical BMD patient (patient 1) with the Duchenne muscular dystrophy (dystrophin) gene at the

Xp21 locus. Circulation 87:1854–1865XLDCM phenotype, but also in typical BMD patients
Towbin JA, Ortiz-Lopez R, Bulman D, Ray PN, Franz(patients 2 and 3). We think that the other isoforms of

W-M, Katus H, Swift M, et al. (1994) A novel cardio-specificdystrophin can modulate the clinical features and the
dystrophin mutation as a cause of X-linked dilated cardio-course of dystrophinopathy, especially with regard to
myopathy (XLCM). Pediatr Res Suppl 37:36Athe XLDCM phenotype.
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Bilateral Retinoblastoma in a Male Patient with an
X;13 Translocation: Evidence for Silencing of the RB1References
Gene by the Spreading of X Inactivation

Berko BA, Swift M (1987) X-linked dilated cardiomyopathy.
To the Editor:N Engl J Med 316:1186–1191

Franz WM, Cremer M, Herrmann R, Grünig E, Fogel W, We describe a male patient who has an X;13 transloca-
Scheffold T, Goebel HH, et al. (1995) X-linked dilated car- tion and bilateral retinoblastoma. DNA replication and
diomyopathy: novel mutation of the dystrophin gene. Ann methylation studies for this patient suggested that X
N Y Acad Sci 752:470–491

inactivation had spread to chromosome 13 and had pro-Klamut HJ, Bosnoyan-Collins LO, Worton RG, Ray PN, Davis
duced functional monosomy for genes on proximal 13q.HL (1996) Identification of a transcriptional enhancer
Inactivation of both alleles of the RB1 gene in 13q14within muscle intron 1 of the human dystrophin gene. Hum
comprises the two rate-limiting steps in the formationMol Genet 5:1599–1606
of retinoblastoma (Knudson 1975; Cavenee et al. 1983).Milasin J, Muntoni F, Severini GM, Bartoloni L, Vatta M,

Krajinovic M, Mateddu A, et al (1996) A point mutation In hereditary retinoblastoma, one allele is inactivated or
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lost because of a germ-line mutation. In Ç3% of pa- to be present, there was concern that functional mono-
somy for proximal 13q might have caused the anomaliestients, this is due to a cytogenetically visible deletion

that includes 13q14 (Turleau et al. 1985). Owing to and might have placed the baby at risk for the develop-
ment of retinoblastoma. Therefore, an ophthalmologicmonosomy for a large chromosomal region, patients

with 13q deletions also have mental retardation, growth consultation was obtained. In close proximity to the
optic nerve, a peripapillary exophytic tumor measuringretardation, and congenital anomalies (Brown et al.

1993). Retinoblastoma formation appears to be initiated 2 disc diameters was present in the left eye. The patient
was transferred to a second facility for laser ablation ofby somatic loss or by inactivation of the second RB1

allele, in a retina precursor cell. The second event most the tumor. In the 3 d between the initial examination
and the transfer, the tumor increased in size by 50%.often involves mitotic nondisjunction, mitotic crossing-

over, or a structural gene mutation (Cavenee et al. In addition, a second tumor focus was detected. The
patient received both laser therapy and chemotherapy1983). In nonhereditary retinoblastoma, both RB1 al-

leles of a retina precursor cell must be inactivated during with carboplatin. At 4 mo of age, retinoblastoma was
identified near the ora in the right eye, and both tumorsretinal development. In Ç15% of such tumors, the RB1

CpG island is methylated (Greger et al. 1989, 1994; were treated by cryotherapy. In addition to multiple
surgeries for the tumor, he also required gastrostomySakai et al. 1991). In vitro and in vivo studies have

suggested that methylation of the RB1 promoter reduces tube feeding and a tracheotomy to control respiratory
difficulties secondary to tracheomalacia. At 51/2 mo ofgene activity (Ohtani-Fujita et al. 1993; Greger et al.

1994). To date, RB1 promoter methylation has not been age, the left eye was found to be filled with a hazy media
with a greenish yellow cast. The retina was detached. Afound in nontumor cells. It is known, however, that

DNA methylation serves to regulate gene activity in nor- magnetic resonance imaging examination of the brain
showed diffuse atrophy of the cerebral hemisphere, withmal cells (for review, see Razin and Shemer 1995). The

role of DNA methylation has been studied best in geno- more atrophy in the left hemisphere than in the right.
There was an enlargement of the lateral and the thirdmic imprinting and in X inactivation. X inactivation

spreads from the X inactivation center (XIC) at Xq13 ventricles. The left eye was enucleated, since there was
no chance of recoverable vision and since regrowth ofthroughout most of the X chromosome and seems to

involve DNA methylation (for review, see Willard the tumor in that eye could not be excluded. A patholog-
ical examination revealed retinoblastoma that filled the1995). A similar spreading mechanism has been pro-

posed for the imprinting of 15q11-13. Constitutional vitreous and was continuous with the detached retina.
Results of cytogenetic studies of the tumor were identicalhypermethylation of the RB1 gene therefore might be

expected to occur in translocations involving chromo- to those of cytogenetic studies of the peripheral blood.
At 13 mo of age, no new tumors were present, but thesome 13 and the X chromosome or in imprinted autoso-

mal chromosome domains. tumor near the ora was larger. Cryopexy was applied
in a triple freeze-thaw technique involving all of theThe patient was born to a G4P3 Hispanic mother by

C-section, because of oligohydramnios, at the 37th wk tumor and the surrounding area. Two weeks later, the
patient was admitted for sepsis. He went into cardiacof gestation. The APGAR scores were 6185. The patient

weighed 1.7 kg (õõ5% of normal), with a length of 39 arrest and failed to respond to resuscitative efforts. The
parents declined the performance of an autopsy. At thecm (õõ5% of normal) and a head circumference of

30.5 cm (õõ5% of normal). In addition to his small time of his death, the patient had moderate/severe devel-
opmental delay.size, the baby had several major and minor congenital

anomalies. These included a prominent occiput, microg- The translocated chromosome in this patient is a cen-
tric fusion of the long arm of a chromosome 13 and thenathia, hypertelorism, posteriorly rotated large ears and

a long philtrum, bilateral hip dislocations, an imperfo- long arm of an X chromosome (fig. 1A). FISH studies
indicated that the centromere of this chromosome con-rate anus with a vesicoureteral fistula, and a ventricular

septal defect with tricuspid regurgitation. Chromosome tained material from both chromosome 13 and the X
chromosome (not shown). The XIST locus was presentanalysis of cultured lymphocytes revealed an unbalanced

X;13 translocation [46,XY,der(13)t(X;13)(q10q10)] in on both the normal X chromosome and the derivative
chromosome, and the RB1 locus was present on both theall cells, indicating the presence of extra X-chromosome

material. Cytogenetically, this would imply a variant of normal chromosome 13 and the derivative chromosome
(not shown). Replication-time studies indicated that theKlinefelter syndrome, but the anomalies were not ex-

plained by this diagnosis. Males with an additional X derivative chromosome was late replicating in all cells
visualized (fig. 1B). Late replication appeared to spreadchromosome usually are phenotypically normal at birth

and often are not diagnosed until adolescence, when through the translocated chromosome, from the long
arm of the X chromosome through the centromere ofphenotypic features and infertility become evident. Al-

though the entire long arm of chromosome 13 appeared chromosome 13 and continuing to proximal 13q14.
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hallmarks of the inactive X chromosome. Inactivation
is initiated at the XIC in Xq13, involves a regulatory
RNA (XIST), and spreads through most of the X chro-
mosome. CpG islands found to be associated with the
5� end of constitutively expressed genes are methylated
on the inactive, but not the active, X chromosome.

X inactivation in somatic cells of female individuals
Figure 1 A, G-banded chromosome 13 and derivative X;13 usually is random. This is not true in females with
chromosome. B, BrdUrd-stained derivative X;13 chromosome adja- balanced X autosomal translocations. In the majority
cent to chromosome 13. The arrow indicates the transition region of cells of such individuals, the translocated X chromo-between the late-replication area and the early replication area of

some remains active, whereas the normal X chromo-chromosome 13 (13q14).
some is inactive. It generally is assumed that the non-
random X inactivation observed in such cases is the
result of a selection process operating against cells inTo determine the methylation status of the RB1 gene,

in peripheral blood cells of the patient, we used the which X inactivation has spread into the autosome
and has inactivated autosomal genes (Willard 1995).methylation-sensitive restriction enzyme BssHII, which

cuts once within a 6.1-kb SacI fragment spanning the In our patient, replication-time studies indicated non-
random X inactivation, with the translocated chromo-promoter and exon 1 (Greger et al. 1989, 1994; Sakai

et al. 1991). Aliquots of genomic DNA (2 mg) were some being inactive in all cells. Theoretically, a need
for functional copies of genes on Xp might have se-digested with SacI / BssHII. To control for complete

digestion by use of the rare cutting enzyme BssHII, 200 lected against the survival of embryonic cells with an
inactive X chromosome.mg of a 186-bp cloned DNA fragment from the EXT1

gene containing a single BssHII site (H. J. Lüdecke and To our knowledge, the patient described here repre-
sents the first case of a male with an X autosomal trans-B. Horsthemke, unpublished data) were added to geno-

mic DNA. After digestion, an aliquot of the restriction location who developed retinoblastoma. We are aware
of four previous reports of X;13 translocations associ-mixture was analyzed on a 2% agarose gel. In each case,

complete digestion of the cloned DNA into fragments ated with retinoblastoma (Nichols et al. 1980; Ejima et
al. 1982; Kajii et al. 1985; Ponzio et al. 1987). All ofof the expected size (111 bp and 75 bp) was observed.

For Southern blot analysis of the RB1 gene, the DNA these patients were females. In the first three cases, the
translocation breakpoints were on Xp and 13q12-q13,fragments were separated on a 0.8% agarose gel, trans-

ferred to a nylon membrane, and hybridized with a 921- and the derivative X chromosome was late replicating
in the majority of cells (Nichols et al. 1980; Ejima et al.bp PCR product spanning the promoter and exon 1 of

the RB1 gene (Lohmann et al. 1991). In DNA from a 1982) or in a minority of cells (Kajii et al. 1985). In the
patient described by Ponzio et al. (1987), thenormal control (fig. 2, lane 3), the 6.1-kb fragment was

unmethylated and cleaved into two fragments of 4.3 kb breakpoints were at Xq12 and 13q31, and the normal
X chromosome was late replicating in all cells studied.and 1.8 kb. In DNA from a hypermethylated retinoblas-

toma (fig. 2, lane 2; patient OM in Greger et al. 1994),
the 6.1-kb SacI fragment was completely resistant to
digestion by BssHII. In DNA from the patient (fig. 2,
lane 1), Ç50% of the SacI fragments were not cut by
BssHII. The addition of more enzyme did not change
the Southern pattern (not shown). In contrast to geno-
mic DNA, a 921-bp PCR product spanning the BssHII
site was cut to completion (not shown). These results

Figure 2 DNA methylation analysis. DNA was digested withindicate that partial cleavage of the genomic DNA from
SacI / BssHII and was analyzed by Southern blot hybridization withthe patient was not due to a BssHII polymorphism but
a probe spanning the promoter and exon 1 of the RB1 gene. Lane 1,was due to hypermethylation of one gene copy per cell.
Peripheral blood cell DNA from the patient. Lane 2, DNA from a

On the basis of the findings that the translocated chro- hypermethylated retinoblastoma. Lane 3, Peripheral blood cell DNA
mosome was late replicating in all cells and that one from a normal control. Lane 1 contains 1.5 1–2 1 as much DNA as

is contained in lanes 2 and 3, as estimated by ethidium bromide stain-copy of the RB1 gene was methylated, we propose that
ing of the gel (not shown). Approximately 50% of the 6.1-kb SacIthe RB1 gene on the translocated chromosome had been
fragments of the patient’s DNA were resistant to cleavage by BssHII.inactivated by the spreading of X inactivation into 13q
Owing to the high G / C content, the probe crosshybridizes to rDNA,

and that this epimutation represents the first genetic which is present in 200–400 copies per haploid genome, and to other
event involved in the formation of retinoblastoma in fragments unrelated to the RB1 gene (Greger et al. 1989, 1994; Belka

et al. 1991).our patient. Late replication and DNA methylation are
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It was postulated that a cell line with a late-replicating nathia, and tetrology of Fallot. The second interstitial
deletion [46,XX,del(13)(q12q22)] was associatedderivative chromosome 13, which contained the XIC

and RB1 loci, was present in the very early stages of with microcephaly, microagnathia, and cleft palate
(Petit et al. 1979).development and then was lost.

Nichols et al. (1980) were the first to suggest that, in
CARRIE JONES,1,* CAROL BOOTH,1 DEBRA RITA,1X;13 translocations, band 13q14 may be functionally

LYDIA JAZMINES,1 BIRGIT BRANDT,2 ANNA NEWLAN,3monosomic owing to the spreading of X inactivation,
AND BERNHARD HORSTHEMKE2

thus becoming a predisposing factor for the onset of 1Lutheran General Children’s Hospital, Park Ridge,retinoblastoma. Mohandas et al. (1982) isolated, in
IL; 2Institut fur Humangenetik, Universitätsklinikum,mouse-human cell hybrids, the inactive der(X) chromo-
Essen, Germany; and 3University of Illinois Eye andsome of the patient described by Nichols et al. (1980)
Ear Infirmary, Chicagoand determined that the gene for esterase D, which

maps close to the RB1 gene, was not expressed. This
result provided biochemical evidence for the inactiva- Acknowledgments
tion of an autosomal gene by the spreading of X inacti-
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